Fit SVR (RBF kernel)
Epsilon-Support Vector Regression. The free parameters in the model are C and epsilon. The implementation is based on libsvm. The fit time complexity is more than quadratic with the number of samples which makes it hard to scale to datasets with more than a couple of 10000 samples.
Usage:
Start the algorithm from the Processing Toolbox panel.
Select a training dataset or create one by clicking the processing algorithm icon, then click run.
Parameters
- Regressor [string]
Scikit-learn python code. See SVR, GridSearchCV, StandardScaler for information on different parameters.
Default:
from sklearn.pipeline import make_pipeline from sklearn.model_selection import GridSearchCV from sklearn.preprocessing import StandardScaler from sklearn.svm import SVR svr = SVR() param_grid = {'kernel': ['rbf'], 'epsilon': [0.], 'gamma': [0.001, 0.01, 0.1, 1, 10, 100, 1000], 'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000]} tunedSVR = GridSearchCV(cv=3, estimator=svr, scoring='neg_mean_absolute_error', param_grid=param_grid) regressor = make_pipeline(StandardScaler(), tunedSVR)
- Training dataset [file]
Training dataset pickle file used for fitting the classifier. If not specified, an unfitted classifier is created.
Outputs
- Output regressor [fileDestination]
Pickle file destination.
Command-line usage
>qgis_process help enmapbox:FitSvrRbfKernel
:
----------------
Arguments
----------------
regressor: Regressor
Default value: from sklearn.pipeline import make_pipeline
from sklearn.model_selection import GridSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVR
svr = SVR()
param_grid = {'kernel': ['rbf'],
'epsilon': [0.],
'gamma': [0.001, 0.01, 0.1, 1, 10, 100, 1000],
'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000]}
tunedSVR = GridSearchCV(cv=3, estimator=svr, scoring='neg_mean_absolute_error', param_grid=param_grid)
regressor = make_pipeline(StandardScaler(), tunedSVR)
Argument type: string
Acceptable values:
- String value
- field:FIELD_NAME to use a data defined value taken from the FIELD_NAME field
- expression:SOME EXPRESSION to use a data defined value calculated using a custom QGIS expression
dataset: Training dataset (optional)
Argument type: file
Acceptable values:
- Path to a file
outputRegressor: Output regressor
Argument type: fileDestination
Acceptable values:
- Path for new file
----------------
Outputs
----------------
outputRegressor: <outputFile>
Output regressor