Fit XGBRegressor
Implementation of the scikit-learn API for XGBoost regression.
XGBoost is a powerful and versatile algorithm for regression tasks. It is well suited to handle large datasets with high-dimensional feature spaces.
Usage:
Start the algorithm from the Processing Toolbox panel.
Select a training dataset or create one by clicking the processing algorithm icon, then click run.
Parameters
- Regressor [string]
Scikit-learn python code. See XGBRegressor for information on different parameters.
Default:
from xgboost import XGBRegressor regressor = XGBRegressor(n_estimators=100)
- Training dataset [file]
Training dataset pickle file used for fitting the classifier. If not specified, an unfitted classifier is created.
Outputs
- Output regressor [fileDestination]
Pickle file destination.
Command-line usage
>qgis_process help enmapbox:FitXgbregressor
:
----------------
Arguments
----------------
regressor: Regressor
Default value: from xgboost import XGBRegressor
regressor = XGBRegressor(n_estimators=100)
Argument type: string
Acceptable values:
- String value
- field:FIELD_NAME to use a data defined value taken from the FIELD_NAME field
- expression:SOME EXPRESSION to use a data defined value calculated using a custom QGIS expression
dataset: Training dataset (optional)
Argument type: file
Acceptable values:
- Path to a file
outputRegressor: Output regressor
Argument type: fileDestination
Acceptable values:
- Path for new file
----------------
Outputs
----------------
outputRegressor: <outputFile>
Output regressor